

Towards an Atlas of Designer Zeolites – identification of unique topologies and Delaunay sphere analysis

M. D. Foster¹, M. R. Fatica² and M. M. J. Treacy¹

¹Dept. of Physics and Astronomy, Arizona State University, PO Box 875104, Tempe AZ 85287 U.S.A. ²Fatica Consulting LLC – <u>www.fatica.net</u> – 966 Emerson, Denver CO 80218 U.S.A.

Introduction

- <u>http://www.hypotheticalzeolites.net</u> online since April 2004, contains approx. 5 million structures
- Receives ~10 visits per day
- A particular topology may be found repeated in different space subgroups.

Delaunay spheres

• It is now possible to search the entire database on calculated sphere properties as described in reference 5

This allows filtering for the following properties:

the diameter of the largest possible included sphere

- Unique topologies have been identified using coordination sequences and vertex symbols
- Duplicate topologies can now be compared
- Delaunay sphere data analysis has been completed for all structures
- Additional tests confirming topology have been applied

Determination of topologically unique frameworks

- Using coordination sequences (CS) and vertex symbols (VS) we have identified duplicate topologies
- The table below shows the number of structures for each *n*, the number of topologically equivalent T atoms

n	# of structures	# of unique topologies	# of structures < 0.1 eV/SiO ₂ *	# of unique topologies < 0.1 eV/SiO ₂ *
1	3870	526	759	90
2	80059	12556	11834	1111
3	105413	32429	10242	4202
4	825182	315908	42147	23420
5	4145644	1806970	110598	78612
6	229239	167127	15304	12538
Total	5389407	2335516	190884	119973

- the diameter of the largest-free-sphere that can diffuse along, a, b, c, ab, bc or abc
- These provide a quick and elegant indication of the porosity of the framework. Caution is needed when comparing to molecular diffusion data.
- This data enables one to examine the nature of the framework i.e. cavities and channel dimensions without **looking** at the structure. This is useful for large databases.

Delaunay Sphere Example

The image shows the structure 229_5_489716, which has favorable energetics and a very low framework density. The calculated included-sphere and free-sphere diameters are among the largest found in the database so far, 58.7 Å and 36.8 Å respectively.

Comparing duplicate topologies

Structures with the same topology can be listed and compared

HOME DATABASES TOOLS REFERENCES LINKS STATISTICS ABOU

Duplicate topologies

27-2_1_2 is listed as a best energy structure, a listing of duplicate topologies is found below

entries

Atlas of Prospective Zeolit...

	lines				
No.	Name	Ener	FD	Type Code	Included Sphere
1	227-2_1_2	0.000985	13.3207	FAU	11.23
2	216_2_2	0.001025	13.323	FAU	11.24
3	227_1_2	0.001027	13.3178	FAU	11.23
4	<u>166_4_654934</u>	0.001046	13.3111	FAU	11.24
5	166_4_605142	0.00108	13.2829	FAU	11.26
3	203_2_2651087	0.04018	12.9576	FAU	10.86
7	<u>166_4_733769</u>	0.060528	14.7951	FAU	9.71
}	<u>166_4_605756</u>	0.074822	14.5136	FAU	10.22
)	215_2_65	0.176821	25.3645	FAU	
0	166_4_605676	0.524122	16.7082	FAU	
11	166_4_638885	0.528669	16.5894	FAU	
12	166_4_761688	0.851053	16.2172	FAU	
13	166_4_606388	0.851907	16.1878	FAU	
14	166_4_606230	0.962476	27.7575	FAU	

This screenshot shows a listing of structures in the database with the FAU topology

Duplicate topologies

TOPOS confirmation of topological properties

- A subset of structures was analyzed by V. A. Blatov and D. M. Proserpio using the TOPOS program. <u>http://www.topos.ssu.samara.ru/</u>
- The majority of topologies were confirmed, providing an important data check.

Links to other databases

- Using the same technique for matching topologies based on CS & VS data, we have been able to link to other structures in other databases.
 - EPINET <u>http://epinet.anu.edu.au/</u>
 - Structures generated by M.W. Deem and co-workers <u>http://www.hypotheticalzeolites.net/DATABASE/DEEM/</u>

- Several topologies are found frequently
- In the table below we list the top 25 occurrences of topologies for structures generated with n = 1 & n = 2

	n=1					n=2					
	Structure	Type Code	Count	E	FD	Structure	Type Code	Count	E	FD	
1	19 2 1779	ABW	1301	0.00	22.4	2 2 23901	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1866	-	26.2	
2	19 1 4	cri	1244	0.00	23.7	14 2 42827		1106		25.9	
3	70-2 2 386071		720	0.04	29.7	2 2 558608		559	0.84	33.3	
4	82 1 15	BCT	591	0.00	22.3	2 2 601528		482	0.39	29.6	
5	150_2_17892	tri	547	0.00	23.1	60_2_23160		469	0.03	24.6	
6	5_2_24374		507	0.00	26.8	2_2_559953		309	0.87	32.7	
7	91_2_8523379		410	0.70	33.3	61_3_13271556	JBW	210	0.00	20.9	
8	2_2_652980		308	0.04	23.4	2_2_416019		193	0.49	33.3	
9	136_1_3	DFT	303	0.00	20.0	61_3_35496765		159	0.00	22.3	
10	161_2_5322	SOD	262	0.00	19.2	62_3_1842131		159	0.03	25.2	
11	13_2_253556		251	0.70	28.6	13_2_264168		120	0.05	23.9	
12	17_2_27747		250	0.58	30.1	15_2_196702		119	0.00	27.1	
13	145_1_30	qua	245	0.00	27.6	62_3_5872330		118	0.70	33.3	
14	20_2_28244	NPO	242	0.00	18.3	59_4_268633		116	0.03	12.8	
15	66_2_3799	ACO	236	0.01	17.5	74_3_2947490		114	0.01	19.8	
16	12_2_26630	ATN	175	0.00	21.1	69_3_40850		108	0.01	18.8	
17	50-2_2_16204		151	0.17	22.6	59_4_280211		106	0.23	25.7	
18	95_2_4735457		151	0.73	33.3	2_2_624587		105	0.59	16.3	
19	88-2_1_28	GIS	143	0.00	19.3	59_4_209724		105	0.04	20.4	
20	62_3_5917516		141	0.01	17.6	49_2_3256		102	0.05	22.8	
21	22_2_29178		131	0.07	9.2	49_2_124		101	0.02	21.5	
22	84_2_713		116	0.00	21.4	151_2_3611718		100		25.4	
23	2_2_419589		113	0.81	33.3	62_3_5926573		99	0.25	27.6	
24	155_1_9		112	0.01	20.9	64_2_12188		98	0.00	22.9	
25	62_3_6071122	CAN	109	0.00	19.6	62_3_1794192		97	0.14	30.2	
Statistics and a statistic statistics											

References

- 1. M. M. J. Treacy, K. H Randall, S. Rao, J. A. Perry and D. J. Chadi, *Zeit. Krist.* 212, 768-791 (1997).
- M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, and M. D. Foster. *Micropor. Mesopor. Mat.*, 74(1-3):121–132, 2004.
- 3. M. D. Foster and M. M. J. Treacy. Progress towards an atlas of designer zeolites. Stud. Surf. Sci. Catal., B:666-673, 2007. Proceedings of the 15th international zeolite conference, Beijing, P. R. China.
- 4. M. M. J. Treacy, M. D. Foster, and I. Rivin. Towards a catalogue of designer zeolites. In K. D. M. Harris and P. P. Edwards, editors, Turnings points in solid-state, materials and surface chemistry, chapter 12. Royal Society of Chemistry, 2007.
- 5. M. D. Foster, I. Rivin, M. M. J. Treacy, and O. Delgado Friedrichs. A geometric solution to the largest-free sphere problem in zeolite frameworks. Micropor. Mesopor. Mat., 90(1):32{38, 2006.

Acknowledgments

The authors are grateful to Arizona State University for startup funds, and to UOP for financial support.